尤辰江

发布者:爱游戏唯一官网发布时间:2023-02-21浏览次数:4796

尤辰江

博士

爱游戏唯一官网爱游戏唯一官网首聘教授

Emailcjyou@scau.edu.cn


个人简介

尤辰江,爱游戏唯一官网首聘教授,广东省珠江人才青年拔尖人才。20157月,复旦大学获理学博士学位。201510月至20207月,在美国加州大学河滨分校进行博士后研究。20209月,作为引进人才任复旦大学青年研究员。20231月,作为引进人才进入爱游戏唯一官网开展教研工作,双聘于岭南现代农业科学与技术广东省实验室。目前主要致力于植物表观遗传学,尤其是非编码RNA与生殖发育的研究。在Nature CommunicationsPNASGenome Biology等国际刊物发表论文30余篇。主持国家自然科学基金两项。



工作经历

2023.1 至今 爱游戏唯一官网首聘教授

2020.9-2022.11  复旦大学青年研究员

2015.10-2020.7  加州大学河滨分校博士后



主要研究领域

1.植物非经典小RNA的生物合成与功能的分子机制

2.大豆开花时间的表观遗传调控



学术兼职

国际期刊Frontiers in Genetics编辑



主持的科研课题

1.国家自然科学基金面上项目(2022-2025,在研)

2.国家自然科学基金青年项目(2020-2022,结题)



发表的主要研究论文

第一及通讯作者(含共同)

1.You, C., Y. Yu, and Y. Wang, Small RNA in plant meiosis and gametogenesis. Reproduction and Breeding, 2022. 2(2): p. 65-70.

2.Wang, C., et al., DNA polymerase epsilon interacts with SUVH2/9 to repress the expression of genes associated with meiotic DSB hotspot in Arabidopsis. Proc Natl Acad Sci U S A, 2022. 119(41): p. e2208441119.

3.王天一, 王应祥, 尤辰江, 植物 PHD 结构域蛋白的结构与功能特性. 遗传, 2021.

4.You, C., et al., FIERY1 promotes microRNA accumulation by suppressing rRNA-derived small interfering RNAs in Arabidopsis. Nat Commun, 2019. 10(1): p. 4424.

5.You, C., et al., Conservation and divergence of small RNA pathways and microRNAs in land plants. Genome Biol, 2017. 18(1): p. 158.

6.Cui, J., C. You, and X. Chen, The evolution of microRNAs in plants. Curr Opin Plant Biol, 2017. 35: p. 61-67.

Zhu, E., et al., The DYT1-interacting proteins bHLH010, bHLH089 and bHLH091 are redundantly required for Arabidopsis anther development and transcriptome. Plant J, 2015. 83(6): p. 976-90.

7.Wang, H., et al., Alternative splicing during Arabidopsis flower development results in constitutive and stage-regulated isoforms. Front Genet, 2014. 5: p. 25.

其他论文

8.Wang, Y., et al., ZMP recruits and excludes Pol IV-mediated DNA methylation in a site-specific manner. Sci Adv, 2022. 8(47): p. eadc9454.

9.Liang, C., et al., Arabidopsis RBV is a conserved WD40 repeat protein that promotes microRNA biogenesis and ARGONAUTE1 loading. Nat Commun, 2022. 13(1): p. 1217.

10.Li, S., et al., T-LOC: a comprehensive tool to localize and characterize T-DNA integration sites. Plant Physiol, 2022.

Li, H., et al., A spontaneous thermo-sensitive female sterility mutation in rice enables fully mechanized hybrid breeding. Cell Res, 2022. 32(10): p. 931-945.

11.Hwang, Y., et al., Anterograde signaling controls plastid transcription via sigma factors separately from nuclear photosynthesis genes. Nat Commun, 2022. 13(1): p. 7440.

12.He, J., et al., Parallel analysis of RNA ends reveals global microRNA-mediated target RNA cleavage in maize. Plant J, 2022. 112(1): p. 268-283.

13.Fan, L., et al., Arabidopsis AAR2, a conserved splicing factor in eukaryotes, acts in microRNA biogenesis. Proc Natl Acad Sci U S A, 2022. 119(41): p. e2208415119.

14.Yang, X., et al., Widespread occurrence of microRNA-mediated target cleavage on membrane-bound polysomes. Genome Biol, 2021. 22(1): p. 15.

15.Hu, H., et al., SPAAC-NAD-seq, a sensitive and accurate method to profile NAD(+)-capped transcripts. Proc Natl Acad Sci U S A, 2021. 118(13).

16.Zhang, B., et al., Linking key steps of microRNA biogenesis by TREX-2 and the nuclear pore complex in Arabidopsis. Nat Plants, 2020. 6(8): p. 957-969.

17.Liu, Y., et al., Genome-wide mRNA and small RNA transcriptome profiles uncover cultivar- and tissue-specific changes induced by cadmium in Brassica parachinensis. Environmental and Experimental Botany, 2020. 180: p. 104207.

18.Fu, Y., et al., Analyses of functional conservation and divergence reveal requirement of bHLH010/089/091 for pollen development at elevated temperature in Arabidopsis. J Genet Genomics, 2020. 47(8): p. 477-492.

19.Wang, Y., et al., NAD(+)-capped RNAs are widespread in the Arabidopsis transcriptome and can probably be translated. Proc Natl Acad Sci U S A, 2019. 116(24): p. 12094-12102.

20.Wang, S., et al., The PROTEIN PHOSPHATASE4 Complex Promotes Transcription and Processing of Primary microRNAs in Arabidopsis. Plant Cell, 2019. 31(2): p. 486-501.

21.Wang, L., et al., DNA methylome analysis provides evidence that the expansion of the tea genome is linked to TE bursts. Plant Biotechnol J, 2019. 17(4): p. 826-835.

22.He, J., et al., Genome-Wide Transcript and Small RNA Profiling Reveals Transcriptomic Responses to Heat Stress. Plant Physiol, 2019. 181(2): p. 609-629.

23.Wang, L., et al., Comparative epigenomics reveals evolution of duplicated genes in potato and tomato. Plant J, 2018. 93(3): p. 460-471.

24.Chen, J., et al., Structural and biochemical insights into small RNA 3' end trimming by Arabidopsis SDN1. Nat Commun, 2018. 9(1): p. 3585.

25.Wang, S., et al., Cytological and Transcriptomic Analyses Reveal Important Roles of CLE19 in Pollen Exine Formation. Plant Physiol, 2017. 175(3): p. 1186-1202.

26.Li, A., et al., Transcriptome Profiling Reveals the Negative Regulation of Multiple Plant Hormone Signaling Pathways Elicited by Overexpression of C-Repeat Binding Factors. Front Plant Sci, 2017. 8: p. 1647.

27.Jia, T., et al., The Arabidopsis MOS4-Associated Complex Promotes MicroRNA Biogenesis and Precursor Messenger RNA Splicing. Plant Cell, 2017. 29(10): p. 2626-2643.

28.Huang, Z., et al., APETALA2 antagonizes the transcriptional activity of AGAMOUS in regulating floral stem cells in Arabidopsis thaliana. New Phytol, 2017. 215(3): p. 1197-1209.

29.Zeng, L., et al., Evolution and protein interactions of AP2 proteins in Brassicaceae: Evidence linking development and environmental responses. J Integr Plant Biol, 2016. 58(6): p. 549-63.

30.Ye, J., et al., Abundant protein phosphorylation potentially regulates Arabidopsis anther development. J Exp Bot, 2016. 67(17): p. 4993-5008.

31.Li, S., et al., Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis. Elife, 2016. 5.

32.Guo, C., et al., MID1 plays an important role in response to drought stress during reproductive development. Plant J, 2016. 88(2): p. 280-293.

33.Cui, J., et al., Feedback Regulation of DYT1 by Interactions with Downstream bHLH Factors Promotes DYT1 Nuclear Localization and Anther Development. Plant Cell, 2016. 28(5): p. 1078-93.

34.Ye, J., et al., Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers. Plant J, 2015. 84(3): p. 527-44.

35.Yang, H., et al., Whole-genome DNA methylation patterns and complex associations with gene structure and expression during flower development in Arabidopsis. Plant J, 2015. 81(2): p. 268-81.



荣誉和奖励

2022年度教育部优秀成果奖(科学技术)自然科学二等奖(排名第三)

2022年度广东省科学技术奖自然科学二等奖(排名第三)